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Abstract
We demonstrate a formally exact quantum–classical correspondence between
the stationary coherent states associated with the commensurate anisotropic
two-dimensional harmonic oscillator and the classical Lissajous orbits. Our
derivation draws upon the earlier work of Louck et al (1973 J. Math. Phys. 14
692) wherein they have provided a non-bijective canonical transformation that
maps, within a degenerate eigenspace, the commensurate anisotropic oscillator
on to the isotropic oscillator. This mapping leads, in a natural manner, to
a Schwinger realization of SU(2) in terms of the canonically transformed
creation and annihilation operators. Through the corresponding coherent states
built over a degenerate eigenspace, we directly effect the classical limit via the
expectation values of the underlying generators. Our work completely accounts
for the fact that the SU(2) coherent state in general corresponds to an ensemble
of Lissajous orbits.

PACS numbers: 03.65.Fd, 03.65.Ge, 03.65.Sq

1. Introduction

The anisotropic oscillator has long been of relevance in describing the intrinsic states of a
deformed nucleus in the Nilsson model [1]. The discovery of super-deformed high spin states
of some nuclei [2] corresponding to spheroidal nuclear shapes of approximately commensurate
axial lengths had helped focus attention on the commensurate anisotropic oscillator. Similarly
in quantum optics a two-mode radiation field may also be discussed in terms of a two-
dimensional oscillator [3]. Likewise in condensed matter physics, the design of nanostructures
permitting ballistic motion of electrons [4, 5] represents yet another area for the application
of such studies.
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Considerable attention has been paid in the literature on the question of symmetries
and degeneracies in the commensurate anisotropic oscillator [6–10]. In particular, Louck
et al have addressed this question from a group theoretical viewpoint by studying the non-
bijective canonical transformation that maps the commensurate anisotropic oscillator, within
a degenerate eigenspace, to the isotropic one.

While the question of achieving the classical limit of quantum dynamics of simple systems
via appropriately constructed coherent states [11–14] has been a long-standing one, interesting
experiments have been carried out recently to demonstrate such a classical limit in quantum
systems [15]. More recently, the classical limit of the commensurate anisotropic oscillator has
been investigated experimentally [16] in a laser resonator by exploiting the analogy between
the Schrödinger equation for the two-dimensional harmonic oscillator and the paraxial wave
equation for the spherical resonators [17, 18]. The question of analytically demonstrating the
classical limit in this system via appropriately constructed coherent states and accounting for
the experimentally observed wave patterns has been an intriguing one and has been addressed
by various authors [16, 19–22]. The purpose of this paper is to resolve this question using
an approach that exploits the symmetry properties of the commensurate two-dimensional
anisotropic oscillator well studied in the literature [8].

Consider the two-dimensional harmonic oscillator described by the Hamiltonian [21],

H = 1
2

(
p̂2

x + p̂2
y + ω2

1x̂
2 + ω2

2ŷ
2
)
, (1)

where ω1 = qω and ω2 = pω, ω is the common factor of the frequencies ω1 and ω2, and p
and q are integers. Normally one takes p and q to be coprime, without loss of generality, as
the common factor between p and q (M say) can be absorbed in the definition of the common
frequency ω. However, we take the Hamiltonian (1) here to describe the experimental situation
of Chen et al [16] where the common frequency ω represents the transverse mode spacing
in the spherical resonator, and p and q can be independently varied by suitably tuning the
cavity length and appropriately choosing the longitudinal mode indices. Thus, p and q could
in practice have a common factor M �= 1. Further, as reported by Chen et al [16], the
experimental situations corresponding to the choice of parameters (p, q) and (lp, lq), where
l is a positive integer, give rise to qualitatively different results in regard to the quantum–
classical correspondence. In view of this, in the rest of the paper, we take p and q to be having
a common factor M in general.

The Hamiltonian (1) can be written in terms of the creation and annihilation operators in
the form

H = ω′
[

1

p

(
a
†
1a1 +

1

2

)
+

1

q

(
a
†
2a2 +

1

2

)]
, (2)

where ω′ = ωpq, and

a1 = 1√
2qω

(qωx̂ + ip̂x), a2 = 1√
2pω

(pωŷ + ip̂y). (3)

It is in fact straightforward to achieve the classical limit of the quantum dynamics described
by the Hamiltonian (2) via the two-mode harmonic oscillator coherent states |α1, α2〉 that are
defined by

a1|α1, α2〉 = α1|α1, α2〉, a2|α1, α2〉 = α2|α1, α2〉. (4)

Note that these are the coherent states associated with the Heisenberg–Weyl group [23]. Let
the system be initially (at t = 0) in the two-mode coherent state |α1, α2〉. The expectation
values of a1, a2 in this state evolve in time under the Hamiltonian (2) as

〈a1(t)〉 = α1 e−iqωt , 〈a2(t)〉 = α2 e−ipωt . (5)
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The classical Hamiltonian corresponding to (1) can be rewritten in the form

H = ω′
(

1

p
|z1|2 +

1

q
|z2|2

)
, (6)

where the complex variables (z1, z2) are related to the classical coordinates x, y and momenta
px, py by

z1 = 1√
2qω

(qωx + ipx), z2 = 1√
2pω

(pωy + ipy), (7)

with ω′ = ωpq as defined earlier. Let us write the solutions of the classical Hamiltonian (6)
as

z1(t) =
√

ωq

2
η1 e−i(ωqt−φ1), z2(t) =

√
ωp

2
η2 e−i(ωpt−φ2), (8)

so that the equations describing the classical Lissajous orbits would be given by

x(t) = η1 cos(qωt − φ1), y(t) = η2 cos(pωt − φ2). (9)

The position probability density, namely |〈x, y|α1, α2〉|2, is Gaussian centred at
[(〈a1〉 +〈

a
†
1

〉)/√
2qω,

(〈a2〉 + 〈a†
2〉

)/√
2pω

]
, and becomes localized at this point in the classical limit,

i.e., h̄ → 0. Thus, as time evolves the peak of the position probability density rides on the
classical trajectory (9). This suggests the following prescription for implementing the classical
limit: the expectation values of the generators a1, a

†
1, a2, a

†
2, of the Heisenberg–Weyl group,

in the two-mode coherent state, tend to the corresponding classical values. Thus the classical
limit in this case is obtained simply by making the correspondence(〈a1〉,

〈
a
†
1

〉
, 〈a2〉,

〈
a
†
2

〉) −→ (z1, z
∗
1, z2, z

∗
2). (10)

The above correspondence is also evident from the formal similarity between solutions (5) for
the expectation values and solutions (8) for the corresponding classical dynamical variables.
This correspondence yields a relation between the parameters in the equations for the Lissajous
orbits (9) and the coherent state |α1, α2〉 as

α1 =
√

ωq

2
η1 eiφ1 , α2 =

√
ωp

2
η2 eiφ2 . (11)

Thus, there is a unique classical trajectory corresponding to a given two-mode coherent state.
Note that the demonstration of the classical limit of the two-dimensional oscillator that

we have presented above, via the two-mode coherent state |α1, α2〉, would be valid even
if one considers the two frequencies ω1, ω2 to be incommensurate. This in fact is an
unsatisfactory feature since the coherent state |α1, α2〉 does not embody the full symmetry
of the commensurate anisotropic oscillator Hamiltonian. To illustrate this point, let us look at
the special case of the isotropic oscillator (p = q = 1). The SU(2) symmetry in this case
is manifest as the classical Hamiltonian (6) preserves the form |z1|2 + |z2|2. The quantum
Hamiltonian (2) on the other hand can be rewritten as

H = ω′(2J0 + 1), (12)

where J0 is the Casimir operator corresponding to the SU(2) Lie algebra generated, in the
Schwinger realization, by

J+ = a
†
1a2, J− = a1a

†
2, Jz = (

a
†
1a1 − a

†
2a2

)/
2, J0 = (

a
†
1a1 + a

†
2a2

)/
2.

(13)

Here, the operators J±, Jz obey the standard commutation relations

[Jz, J±] = ±J±, [J+, J−] = 2Jz. (14)
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In view of (13), the set of simultaneous eigenstates of J 2 = J0(J0 + 1) and Jz, namely
|j,m〉, j = 0, 1, . . . ,∞, |m| � j , where j = 1

2 (n1 +n2) and m = 1
2 (n1 −n2), is isomorphic to

the set of number states |n1, n2〉. The isotropic oscillator Hamiltonian divides this set of states
into degenerate eigenspaces each characterized by j (the eigenvalue of the Casimir operator
J0) independent of m. The two-mode harmonic oscillator coherent state |α1, α2〉 can then be
expressed as [24]

|α1, α2〉 =
∞∑

j=0

e− 1
2 (|α1|2+|α2|2)(|α1|2 + |α2|2)j

(
α2

|α2|
)j

|j, τ 〉, (15)

where |j, τ 〉 is the SU(2) coherent state [23, 25, 26] built over states in the degenerate
eigenspace {|j,m〉, |m| � j} (equivalently the number states |n1, n2〉 with n1 + n2 held fixed),
namely,

|j, τ 〉 = 1

(1 + |τ |2)j
j∑

m=−j

(
2j

j + m

) 1
2

τ j+m|j,m〉, (16)

with τ = α1/α2. Note that the two-mode coherent state |α1, α2〉 involves a sum over
all degenerate eigenspaces labelled by j , and hence it does not implement the SU(2)

symmetry of the isotropic oscillator Hamiltonian. The coherent state |j, τ 〉 on the other hand,
being a projection of the two-mode coherent state on to a particular degenerate eigenspace
characterized by the energy E = ω′(2j + 1), does respect this symmetry. In this sense, the
appropriate coherent state which must be used to examine the classical limit in the isotropic
oscillator case is the SU(2) coherent state (16).

Indeed, Bièvre [27] and Pollet et al [28] have used the SU(2) coherent states to
demonstrate the classical limit in the case of the isotropic harmonic oscillator. In particular,
they have rigorously demonstrated that the coordinate space probability density |〈x, y|j, τ 〉|2
in the limit 2j = N → ∞ becomes localized over the classical Lissajous (elliptic) orbits.

More recently, the question of how to analytically derive a connection between a suitably
constructed coherent state for the commensurate two-dimensional anisotropic oscillator and the
classical Lissajous orbits has acquired interest [19–22], especially with a view to theoretically
account for the experimental demonstration of such a classical limit by Chen et al [16]. Chen
and coworkers [16, 19] have made an ansatz on the appropriate coherent state, something that
resembles an SU(2) coherent state, namely,

|N,p, q, τ 〉 = 1

(1 + |τ |2)N/2

N∑
K=0

(
N

K

) 1
2

τK |pK, q(N − K)〉, (17)

where N is a non-negative integer. From a numerical study of the coordinate space probability
density associated with the above state they have guessed the following quantum–classical
connection. For coprime p and q, the classical periodic orbit is given by

x(t) = η1 cos(qωt − φ/p), y(t) = η2 cos(pωt), (18)

with the amplitudes η1 and η2 given by

η1 =
√

1

ωq

(
2pN |τ |2
1 + |τ |2 + 1

)
, η2 =

√
1

ωp

(
2qN

1 + |τ |2 + 1

)
, (19)

where φ is an arbitrary phase. On the other hand, if p and q have a common factor M, the
coordinate space probability density is found to correspond to an ensemble of classical periodic
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orbits, the total number of such periodic orbits being M, and their trajectories are given by

xk(t) = η1 cos[qωt − (φ + 2πk)/p], k = 0, 1, . . . , M − 1,

y(t) = η2 cos(pωt),
(20)

with η1, η2 as defined in (19).
Chen et al [21] have, for the first time, attempted to give an analytical derivation of the

above guessed equations for the classical periodic orbits in the commensurate anisotropic
oscillator case. They effect the classical limit via the two-mode coherent state |α1, α2〉 as
demonstrated in equations (10) and (11), and then utilize the method of triangular partial sums
to essentially project a stationary ‘coherent’ state out of the two-mode coherent state |α1, α2〉.
They indicate a connection between the parameters of this stationary coherent state and the
classical periodic orbits in the case when p and q are coprime, leaving the question of what
happens in the case when p and q have a common factor M �= 1 unanswered. Unfortunately,
their derivation does not clearly bring out the fact that the coherent state that they have projected
out is indeed the SU(2) coherent state. Not surprisingly, these authors have referred to the
stationary state constructed by them as a kind of SU(2) coherent state. Górska et al [22] on the
other hand offer an approximate correspondence between the experimentally observed wave
patterns and the classical Lissajous orbits.

It is natural to expect, as in the isotropic oscillator case, that the appropriate coherent states
for the commensurate anisotropic oscillator should be those associated with its underlying
symmetry group. While the underlying SU(2) group structure of the isotropic oscillator is
manifest, as outlined above, the fact that the group SU(2) also captures the symmetry of
the two-dimensional commensurate anisotropic oscillator has been shown by Louck et al
[8]. In particular, they have concentrated on the degenerate eigenspaces of the commensurate
anisotropic oscillator and have constructed a non-bijective canonical transformation that maps,
within a degenerate eigenspace, the commensurate anisotropic oscillator Hamiltonian to an
isotropic one, thus revealing the SU(2) symmetry and also accounting for the ‘accidental’
degeneracy in the former case. Furthermore, they have also noted that this mapping leads, in
a natural manner, to a Schwinger realization of SU(2) in terms of the canonically transformed
creation and annihilation operators, within a given degenerate eigenspace.

In the present paper, we use symmetry arguments to identify the appropriate coherent
states for the commensurate anisotropic oscillator. We utilize the above-mentioned canonical
transformation of Louck et al, and the Schwinger realization of SU(2) to construct the
stationary coherent states built over a degenerate eigenspace. We use these coherent states
and demonstrate a correspondence with the classical Lissajous orbits. In particular, we
derive a relation between the parameters characterizing the SU(2) coherent state and those
characterizing the single Lissajous orbit in the case when p and q are coprime, and an ensemble
of M Lissajous orbits when p and q have a common factor M.

2. Canonical transformations and the symmetry group of the commensurate
anisotropic oscillator

In this section, we collect the main results from the work of Louck et al [8] that we shall make
use of in the following section. As has been shown by Louck et al [8], the eigenstates of the
commensurate anisotropic oscillator Hamiltonian (with ω1 = qω,ω2 = pω) can be divided
into qp number of different subsets of states1

{|n1p + λ1, n2q + λ2〉, n1, n2 = 0, 1, . . . ,∞}, (21)
1 Note that although Louck et al [8] have considered q and p to be coprime, their analysis goes through even if one
considers them to be having a common factor.
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for each λ1 = 0, 1, . . . , p − 1, λ2 = 0, 1, . . . , q − 1. The states in (21) are eigenstates of H
with eigenvalues

E = ω′
[
(n1 + n2) +

1

p

(
λ1 +

1

2

)
+

1

q

(
λ2 +

1

2

)]
, (22)

so that those states belonging to the set (21) for a fixed value of n1 + n2 are degenerate.
In each of the degenerate eigenspaces (21) labelled by (λ1, λ2), there exists a canonical

transformation (a1, a2) → (ã1, ã2) given by

ã1 =
√

1

p
(n̂1 − λ1) n̂1(n̂1 − 1)(n̂1 − p + 1)−

1
2
(
a
†
1

)p
,

ã2 =
√

1

q
(n̂2 − λ2) n̂2(n̂2 − 1)(n̂2 − q + 1)−

1
2
(
a
†
2

)q
, (23)

n̂1 = a
†
1a1, n̂2 = a

†
2a2,

such that the Hamiltonian in the transformed picture becomes that of an isotropic oscillator
with frequency ω′, namely,

H = ω′
[(

ã
†
1ã1 +

1

2

)
+

(
ã
†
2ã2 +

1

2

)]
. (24)

Note that the action of the canonically transformed creation and annihilation operators on
a particular state in the subset of states (21) is given by, for example,

ã
†
1|n1p + λ1, n2q + λ2〉 =

√
n1 + 1|(n1 + 1)p + λ1, n2q + λ2〉,

ã2|n1p + λ1, n2q + λ2〉 = √
n2|n1p + λ1, (n2 − 1)q + λ2〉,

(25)

and so on.
As observed by Louck et al [8], one has the Schwinger realization of SU(2) in terms of

the canonically transformed operators ã1, ã
†
1, ã2, ã

†
2, namely,

J+ = ã
†
1ã2, J− = ã1ã

†
2, Jz = (

ã
†
1ã1 − ã

†
2ã2

)/
2, J0 = (

ã
†
1ã1 + ã

†
2ã2

)/
2, (26)

where the operators J±, Jz obey the commutation relations (14).
In view of (25), one can identify, for fixed (λ1, λ2), the simultaneous eigenstates of

J 2 = J0(J0 + 1) and Jz, namely |j,m〉, where j = 1
2 (n1 + n2) and m = 1

2 (n1 − n2), with
|n1p + λ1, n2q + λ2〉. In terms of the generators of SU(2) defined in (26), the Hamiltonian
(24) is given by

H = ω′(2J0 + 1), (27)

so that for fixed (λ1, λ2) the energy eigenvalue in the state |j,m〉 is given by E = ω′(2j + 1)

independent of m. This again reveals the ‘accidental’ degeneracy of the commensurate
anisotropic oscillator due to the underlying SU(2) symmetry group.

We would like to recall here that Louck et al [8] have also provided a canonical
transformation (z1, z2) → (z̃1, z̃2), in terms of complex variables defined in (7), given by

z̃1 = 1√
p

(
z1

|z1|
)p

|z1|, z̃2 = 1√
q

(
z2

|z2|
)q

|z2|, (28)

such that the classical Hamiltonian (6) in the transformed picture becomes that of the classical
isotropic harmonic oscillator, namely,

H = ω′(|z̃1|2 + |z̃2|2). (29)

The SU(2) symmetry of the classical Hamiltonian (29) is evident again due to the fact that
the form |z̃1|2 + |z̃2|2 is preserved.
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3. SU (2) coherent states, stereographic projection and Lissajous orbits

Let us construct a SU(2) coherent state out of the states in the degenerate eigenspace
{|j,m〉, |m| � j} for fixed (λ1, λ2), namely,

|j, τ 〉 = 1

(1 + |τ |2)j
j∑

m=−j

(
2j

j + m

) 1
2

τ j+m|j,m〉,

τ = tan
θ

2
eiφ, 0 � θ � π, 0 � φ � 2π.

(30)

We would like to remark that, in view of the isomorphism between the states
|n1p + λ1, n2q + λ2〉 and the angular momentum eigenstates |j,m〉, for fixed (λ1, λ2), where
j = 1

2 (n1 + n2) and m = 1
2 (n1 − n2), one can see that the SU(2) coherent state defined

above is equivalent to the ‘coherent’ state (17) considered earlier by Chen and coworkers
[16, 19, 21] if one makes the identification N = 2j and specializes to (λ1, λ2) = (0, 0). Thus,
we have provided a symmetry-based justification for the particular form of the coherent state
that Chen and coworkers had only conjectured based on the heuristic considerations. As will
become evident from the following analysis, the classical limit is independent of the choice of
λ1, λ2, i.e., it does not matter which degenerate eigenspace one works in.

Let the system be initially (at t = 0) in the SU(2) coherent state as defined in (30). As
time evolves, the system remains in the initial coherent state except for an irrelevant phase
factor e−iω′t (2j+1), so that the expectation values of Jx = (J+ + J−)/2, Jy = −i(J+ − J−)/2
and Jz remain stationary, and are given by

〈Jx〉 = j sin θ cos φ, 〈Jy〉 = −j sin θ sin φ, 〈Jz〉 = −j cos θ. (31)

Clearly, the point (〈Jx〉, 〈Jy〉, 〈Jz〉) lies on a sphere of radius j .
Let us now consider the solutions of the classical Hamiltonian (6) given in (8). In terms of

the canonically transformed complex variables (z̃1, z̃2) defined in (28), these solutions become

z̃1(t) = 1√
p

√
ωq

2
η1 e−ip(ωqt−φ1), z̃2(t) = 1√

q

√
ωp

2
η2 e−iq(ωpt−φ2). (32)

Note that while the solutions generated by the classical Hamiltonian (6), namely, z1(t)

and z2(t), oscillate at frequencies ωp and ωq, respectively, the solutions generated by the
canonically transformed Hamiltonian (20) oscillate at the common frequency ωpq. We would
like to remark that the canonical transformation (28) given by Louck et al, although it is
a transformation of phase space variables, when regarded as a transformation among the
coordinates alone, amounts to an untwisting of the Lissajous figures into a generic ellipse.

Since |z̃1|2 + |z̃2|2 is a constant in view of energy conservation (29), there exists a mapping
(stereographic projection) from a point (jx, jy, jz) on a sphere of radius j , via the north pole,
to the complex Z-plane where we have defined Z to be

Z = 2j
z̃2

z̃1
. (33)

The stereographic projection from (jx, jy, jz) to Z is given by

Z = 2j

j − jz

(jx + ijy). (34)

Recall that we have earlier effected the transition to the classical limit (10) of the
two-dimensional oscillator by identifying the expectation values of the generators of the
Heisenberg–Weyl group, namely, a1, a

†
1, a2, a

†
2, in the two-mode coherent states, with

the corresponding classical phase space values. Motivated by this we prescribe that the

7
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transition to the classical limit of the commensurate anisotropic two-dimensional oscillator,
in terms of the SU(2) coherent state, can be effected in analogy with (10), by making the
correspondence between the expectation values of the generators of SU(2) in the SU(2)

coherent states, namely,

(〈Jx〉, 〈Jy〉, 〈Jz〉) −→ (jx, jy, jz), (35)

where (jx, jy, jz) is the point on the sphere of radius j corresponding to the pair of complex
numbers (z̃1, z̃2) that form the solution set (32) of the classical isotropic oscillator Hamiltonian
in the transformed picture (29). In fact, such a quantum–classical correspondence is implicit
in the analysis of Bièvre [27] and Pollet et al [28] in the case of the isotropic oscillator.

In view of the proposed correspondence (35), we therefore have

jx = j sin θ cos φ, jy = −j sin θ sin φ, jz = −j cos θ, (36)

and hence in view of (34) the complex variable Z in the projective plane is related to the
parameters in the SU(2) coherent state (30) by

Z = 2j cot
θ

2
e−iφ = 2j

τ
. (37)

On combining this result with (32) and (33), we have the relations
qη1

pη2
= |τ | (38)

and

ei(pφ1−qφ2) = eiφ. (39)

Relation (38), in conjunction with the identification of the classical expression of
energy (6) with the eigenvalue of the quantum Hamiltonian (27) in the SU(2) coherent state,
namely,

ω2

(
q2

2
η2

1 +
p2

2
η2

2

)
= ω′(2j + 1) = ωpq(N + 1), (40)

leads to the solutions for η1 and η2,

η1 =
√

2p(N + 1)

qω

|τ |√
1 + |τ |2

, η2 =
√

2q(N + 1)

pω

1√
1 + |τ |2

. (41)

The solution of (39) needs detailed consideration. The general solution of relation (39)
may be written as

pφ1 − qφ2 = φ + 2πk, (42)

where k is an arbitrary integer. We shall now try to fix the allowed range of values of k. As we
shall see this will depend on whether p and q are coprime or not. Note that keeping φ1 fixed for
example while varying φ2 in equation (9) would only change the initial point on the Lissajous
orbit and hence would leave the shape of the orbit itself invariant. This reparametrization
invariance of the Lissajous orbits allows one the freedom to choose φ1 and φ2 independently
in such a way that (42) is valid. We conveniently choose

φ1 = ν1χ +
ε

p
, φ2 = −ν2χ +

ε

q
, (43)

where ν1 and ν2 are integers and ε is real. Hence, relation (42) now becomes

(pν1 + qν2)χ = φ + 2πk. (44)
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We now invoke the Bezout’s identity [29] which states that there exist integers ν1 and ν2

such that one can always express the greatest common divisor of p and q (M say) in the form
pν1 + qν2 = M . Hence it follows from Bezout’s identity that if we choose ν1 and ν2 such
that pν1 + qν2 = M then relation (44) becomes

χ = φ

M
+

2πk

M
, k = 0, 1, . . . , M − 1. (45)

If one assumes that p and q are relatively prime (i.e., M = 1), then k = 0 is the only possibility
in (42) and we thus get the unique solution

pφ1 − qφ2 = φ. (46)

On the other hand if p and q have a common factor M, then in view of (45) one gets the
solution,

pφ1 − qφ2 = φ + 2πk, k = 0, 1, . . . ,M − 1. (47)

Note that the expressions given in (41) for the amplitudes and in (46) and (47) for the
phases, in the case when p and q are coprime and not coprime, respectively, when substituted
in the equations for the Lissajous orbit (9), in the N 	 1 limit (and for φ2 = 0), agree2 with
solutions (18)–(20) guessed by Chen and coworkers [16, 19], based on their numerical study
of the coordinate space probability densities associated with the coherent state (27). Besides
as noted by these authors, these solutions also agree with the experimental results [16]. Hence
this agreement provides an a posteriori justification for our prescription (35) for effecting the
classical limit in this problem.

4. Conclusions

In this paper, we have exploited the canonical transformation (given by Louck et al [8])
from the commensurate anisotropic oscillator to the isotropic oscillator in order to construct
appropriate SU(2) coherent states for the commensurate anisotropic oscillator over a
degenerate eigenspace. We have demonstrated the classical limit via the expectation values
of the underlying generators. We have derived explicit expressions for the parameters in the
Lissajous orbit equations in terms of the parameters of the SU(2) coherent state. In particular,
our work completely accounts for the fact that the SU(2) coherent state in general corresponds
to an ensemble of Lissajous orbits.

It will be interesting to extend the procedure employed in the present paper to the case
of commensurate two-dimensional anisotropic oscillator in the presence of a weak nonlinear
coupling [21] and the three-dimensional commensurate anisotropic oscillator [30] both of
which have been experimentally investigated using analog optical systems recently. We hope
to address these questions in our future work.
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